فرض کنید 20 مشاهده از توزیع نمایی با پارامتر نامعلوم لامبدا داریم (داده ها را با تابع rexp شبیه سازی می کنیم). می خواهیم برآورد ماکزیمم درستنمایی برای پارامتر مجهول را به دست بیاوریم. ابتدا 20 مشاهده شبیه سازی می کنیم. (اعداد تولید شده هربار متفاوت هستند، ولی همگی از توزیع نمایی استخراج شده اند.) سپس تابع لگاریتمی آن را بصورت تابعی به نام nllhood می نویسیم. سپس با nlminb براورد پارامتر مورد نظر را محاسبه می کنیم.
حتما بخوانید: خوشهبندی سلسله مراتبی
خروجی برنامه:
$par
[1] 4.389834
$objective
[1] -9.585834
$convergence
[1] 0
$iterations
[1] 6
$evaluations
function gradient
7 8
$message
[1] “relative convergence (4)”
برنامه:
x <- rexp(20, rate = 4)
> n <- length(x)
> nllhood = function(lambda) {
+ -1 * (n * log(lambda) – lambda * sum(x))
+ }
> fit <- nlminb(6, nllhood)
> fit
با دریافت « مشاوره برنامهنویسی، وب و سئو » از کارشناسان جوان حرفهای و باتجربه ساکوراد؛ موفقیت کسب و کار، رونق فروش و افزایش درآمد خود را تضمین کنید!